Non - equilibrium dynamics of hard - core bosons on 1 D lattices : short vs large time results MARCOS
نویسندگان
چکیده
Submitted for the MAR05 Meeting of The American Physical Society Non-equilibrium dynamics of hard-core bosons on 1D lattices: short vs large time results MARCOS RIGOL, Physics Department, University of California, Davis, ALEJANDRO MURAMATSU, Institut fuer Theoretische Physik III, Universitaet Stuttgart — Based on an exact treatment we study the non-equilibrium dynamics of hard-core bosons on one-dimensional lattices. Starting from a pure Fock state we find that quasi-long range correlations develop very fast in the system, and they lead to the emergence of quasi-condensates at finite momentum [1]. The exponent observed in the power-law decay of the one-particle density matrix, which develops dynamically, is the same that has been proven to be universal in the equilibrium case [2]. We also study the time evolution of clouds of hard-core bosons when they are released from a harmonic trap. In this case we show that the momentum distribution of the free expanding hard-core bosons approaches to the one of noninteracting fermions [3], in contrast to the known behavior in equilibrium systems. [1] M. Rigol and A. Muramatsu, cond-mat/0403387, to appear in Phys. Rev. Lett. (2004). [2] M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603(R) (2004); ibid. cond-mat/0409132. [3] M. Rigol and A. Muramatsu, cond-mat/0410683. Marcos Rigol Physics Department, University of California, Davis Date submitted: 12 Nov 2004 Electronic form version 1.4
منابع مشابه
Ground-state properties of hard-core bosons confined on one-dimensional optical lattices
We study the ground-state properties of hard-core bosons trapped by arbitrary confining potentials on one-dimensional optical lattices. A recently developed exact approach based on the Jordan-Wigner transformation is used. We analyze the large distance behavior of the one-particle density matrix, the momentum distribution function, and the lowest natural orbitals. In addition, the low-density l...
متن کاملFluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench.
We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench...
متن کاملUltracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime.
Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-co...
متن کاملEntropy of isolated quantum systems after a quench.
A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a sys...
متن کاملCollapse and revival oscillations as a probe for the tunneling amplitude in an ultracold Bose gas
We present a theoretical study of the quantum corrections to the revival time due to finite tunneling in the collapse and revival of matter-wave interference after a quantum quench. We study hard-core bosons in a superlattice potential and the Bose-Hubbard model by means of exact numerical approaches and mean-field theory. We consider systems without and with a trapping potential present. We sh...
متن کامل